Abstract

A deep recurrent neural network with long short-term memory units (DRNN-LSTM) model is developed to forecast aggregated power load and the photovoltaic (PV) power output in community microgrid. Meanwhile, an optimal load dispatch model for grid-connected community microgrid which includes residential power load, PV arrays, electric vehicles (EVs), and energy storage system (ESS), is established under three different scheduling scenarios. To promote the supply-demand balance, the uncertainties of both residential power load and PV power output are considered in the model by integrating the forecasting results. Two real-world data sets are used to test the proposed forecasting model, and the results show that the DRNN-LSTM model performs better than multi-layer perception (MLP) network and support vector machine (SVM). Finally, particle swarm optimization (PSO) algorithm is used to optimize the load dispatch of grid-connected community microgrid. The results show that EES and the coordinated charging mode of EVs can promote peak load shifting and reduce 8.97% of the daily costs. This study contributes to the optimal load dispatch of community microgrid with load and renewable energy forecasting. The optimal load dispatch of community microgrid with deep learning based solar power and load forecasting achieves total costs reduction and system reliability improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.