Abstract

We investigate a long-run behavior of a linear stochastic system. It is assumed that the quadratic cost includes a time-varying function and its multiplicative inverse. Such a specification reflects the fact that time preferences used by agents to assess different types of losses evolve in opposite directions. We consider the case when priority is set for the losses associated with state deviations. The optimal control law is derived with respect to extended long-run average cost criteria. We provide conditions for the existence of an alternative control strategy, which is also optimal and is based on a solution of an algebraic Riccati equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.