Abstract

Laplacian matrices play an important role in linear-consensus algorithms. This paper studies optimal linear-consensus algorithms for multivehicle systems with single-integrator dynamics in both continuous-time and discrete-time settings. We propose two global cost functions, namely, interaction-free and interaction-related cost functions. With the interaction-free cost function, we derive the optimal (nonsymmetric) Laplacian matrix by using a linear-quadratic-regulator-based method in both continuous-time and discrete-time settings. It is shown that the optimal (nonsymmetric) Laplacian matrix corresponds to a complete directed graph. In addition, we show that any symmetric Laplacian matrix is inverse optimal with respect to a properly chosen cost function. With the interaction-related cost function, we derive the optimal scaling factor for a prespecified symmetric Laplacian matrix associated with the interaction graph in both continuous-time and discrete-time settings. Illustrative examples are given as a proof of concept.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.