Abstract

In multicellular organisms, antiviral defense mechanisms evoke a reliable collective immune response despite the noisy nature of biochemical communication between tissue cells. A molecular hub of this response, the interferon I receptor (IFNAR), discriminates between ligand types by their affinity regardless of concentration. To understand how ligand type can be decoded robustly by a single receptor, we frame ligand discrimination as an information-theoretic problem and systematically compare the major classes of receptor architectures: allosteric, homodimerizing, and heterodimerizing. We demonstrate that asymmetric heterodimers achieve the best discrimination power over the entire physiological range of local ligand concentrations. This design enables sensing of ligand presence and type, and it buffers against moderate concentration fluctuations. In addition, receptor turnover, which drives the receptor system out of thermodynamic equilibrium, allows alignment of activation points for ligands of different affinities and thereby makes ligand discrimination practically independent of concentration. IFNAR exhibits this optimal architecture, and our findings thus suggest that this specialized receptor can robustly decode digital messages carried by its different ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.