Abstract

This paper investigates the optimal strategies for liability management and dividend payment in an insurance company. The surplus process is jointly determined by the reinsurance policies, liability levels, future claims and unanticipated shocks. The decision maker aims to maximize the total expected discounted utility of dividend payment in infinite time horizon. To describe the extreme scenarios when catastrophic events occur, a jump-diffusion Cox-Ingersoll-Ross process is adopted to capture the substantial claim rate hikes. Using dynamic programming principle, the value function is the solution of a second-order integro-differential Hamilton-Jacobi-Bellman equation. The subsolution--supersolution method is used to verify the existence of classical solutions of the Hamilton-Jacobi-Bellman equation. The optimal liability ratio and dividend payment strategies are obtained explicitly in the cases where the utility functions are logarithm and power functions. A numerical example is provided to illustrate the methodologies and some interesting economic insights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call