Abstract

Landing safety is the prior concern in planetary exploration missions. With the development of precise landing technology, future missions require vehicles to land on places of great scientific interest which are usually surrounded by rocks and craters. In order to perform a safe landing, the vehicle should be capable of detecting hazards, estimating its fuel consumption as well as touchdown performance, and locating a safe spot to land. The landing site selection process can be treated as an optimization problem which, however, cannot be efficiently solved through traditional optimization methods due to its complexity. Hence, the paper proposes a synthetic landing area assessment criterion, safety index, as a solution of the problem, which selects the best landing site by assessing terrain safety, fuel consumption and touchdown performance during descent. The computation effort is cut down after reducing the selection scope and the optimal landing site is found through a quick one-dimensional search. A typical example based on the Mars Science Laboratory mission is simulated to demonstrate the capability of the method. It is proved that the proposed strategy manages to pick out a safe landing site for the mission effectively. The safety index can be applied in various planetary descent phases and provides reference for future mission designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call