Abstract

The optimal coefficients in the sense of Korobov serve for obtaining good lattice points sets. By using these sets for multidimensional numerical integration, numerical solution of integral equation and other related applications, the relative error of corresponding Quasi Monte Carlo algorithms can be kept relatively small. This study deals with finding optimal coefficients for good lattice points for high dimensional problems in weighted Sobolev and Korobov spaces. Two Quasi Monte Carlo algorithms for boundary value problems are proposed and analyzed. For the first of them the coefficients that characterize the good lattice points are found “component-by-component”: the (k + l)th coefficient is obtained by one-dimensional search with all previous k coefficients kept unchanged. For the second algorithm, the coefficients depending on single parameter are found in Korobov's form. Some numerical experiments are made to illustrate the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.