Abstract

Nowadays QKD plays a critical role in unconditionally-secure and quantum-safe key distribution. Commercially available QKD devices are getting more popular for institutional and governmental national and international networks, but are expensive and offer limited key rates. We provide a formalization of QKD-generated key forwarding and redistribution at the KMS level by extending the network graph of physical QKD links to the complete graph with logical links, and we investigate its application on three practical scalable scenarios (all-to-all, one-to-all, one-to-one). We define a maximization goal for each scenario, and provide a linear programming problem statement to compute the optimal redistribution. We perform an extensive analysis of the algorithm in terms of forwarding results and key consumption on simulated QKD networks and discuss the implications of network size and graph topology on the algorithm’s performance and complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.