Abstract

A unified framework to optimally select the bandwidth and kernel function of spot volatility kernel estimators is put forward. The proposed models include not only classical Brownian motion driven dynamics but also volatility processes that are driven by long-memory fractional Brownian motions or other Gaussian processes. We characterize the leading order terms of the mean squared error, which in turn enables us to determine an explicit formula for the leading term of the optimal bandwidth. Central limit theorems for the estimation error are also obtained. A feasible plug-in type bandwidth selection procedure is then proposed, for which, as a sub-problem, a new estimator of the volatility of volatility is developed. The optimal selection of the kernel function is also investigated. For Brownian Motion type volatilities, the optimal kernel turns out to be an exponential function, while, for fractional Brownian motion type volatilities, easily implementable numerical results to compute the optimal kernels are devised. Simulation studies further confirm the good performance of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.