Abstract
In this paper an optimal Kalman filter design problem is studied for networked stochastic linear discrete-time systems with random measurement delays, packet dropouts and missing measurements. Any of these three uncertainties in the measurement can occur in the network in the same run. Based on a Markov chain, we develop a unified/combined model to accommodate random delay, packet dropouts and missing measurements. Some simulation examples are presented to show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.