Abstract
<span>Clustering is a robust machine learning task that involves dividing data points into a set of groups with similar traits. One of the widely used methods in this regard is the k-means clustering algorithm due to its simplicity and effectiveness. However, this algorithm suffers from the problem of predicting the number and coordinates of the initial clustering centers. In this paper, a method based on the first artificial bee colony algorithm with variable-length individuals is proposed to overcome the limitations of the k-means algorithm. Therefore, the proposed technique will automatically predict the clusters number (the value of k) and determine the most suitable coordinates for the initial centers of clustering instead of manually presetting them. The results were encouraging compared with the traditional k-means algorithm on three real-life clustering datasets. The proposed algorithm outperforms the traditional k-means algorithm for all tested real-life datasets.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.