Abstract

We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-nonlinear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4×4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to gain insight on the schedulability in WMN, i.e. to investigate the optimal placement of one or more gateways from a delay bound perspective, and to investigate how the schedulability is affected by the transmission range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.