Abstract
An optimal investment problem is solved for an insider who has access to noisy information related to a future stock price, but who does not know the stock price drift. The drift is filtered from a combination of price observations and the privileged information, fusing a partial information scenario with enlargement of filtration techniques. We apply a variant of the Kalman-Bucy filter to infer a signal, given a combination of an observa- tion process and some additional information. This converts the combined partial and inside information model to a full information model, and the associated investment problem for HARA utility is explicitly solved via duality methods. We consider the cases in which the agent has information on the terminal value of the Brownian motion driving the stock, and on the terminal stock price itself. Comparisons are drawn with the classical partial informa- tion case without insider knowledge. The parameter uncertainty results in stock price inside information being more valuable than Brownian information, and perfect knowledge of the future stock price leads to infinite additional utility. This is in contrast to the conventional case in which the stock drift is assumed known, in which perfect information of any kind leads to unbounded additional utility, since stock price information is then indistinguishable from Brownian information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.