Abstract
The optimal investment problem for defined contribution (DC) pension plans with partial information is the subject of this paper. The purpose of the return of premium clauses is to safeguard the rights of DC pension plan participants who pass away during accumulation. We assume that the market price of risk consists of observable and unobservable factors that follow the Ornstein-Uhlenbeck processes, and the pension fund managers estimate the unobservable component from known information through Bayesian learning. Considering maximizing the expected utility of fund wealth at the terminal time, optimal investment strategies and the corresponding value function are determined using the dynamical programming principle approach and the filtering technique. Additionally, fund managers forsake learning, which results in the presentation of suboptimal strategies and utility losses for comparative analysis. Lastly, numerical analyses are included to demonstrate the impact of model parameters on the optimal strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.