Abstract

In a setting where we have intervals for the values of floating-point variables x, a, and b, we are interested in improving these intervals when the floating-point equality $x ⊕ a = $b holds. This problem is common in constraint propagation, and called the inverse projection of the addition. It also appears in abstract interpretation for the analysis of programs containing IEEE 754 operations. We propose floating-point theorems that provide optimal bounds for all the intervals. Fast loop-free algorithms compute these optimal bounds using only floating-point computations at the target precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.