Abstract

Using a residuum approach, we provide a complete description of the space of the rational spatial curves of given tangent directions. The rational Pythagorean hodograph curves are obtained as a special case when the norm of the direction field is a perfect square. The basis for the curve space is given explicitly. Consequently a number of interpolation problems (G1, C1, C2, C1/G2) in this space become linear, cusp avoidance can be encoded by linear inequalities, and optimization problems like minimal energy or optimal length are quadratic and can be solved efficiently via quadratic programming. We outline the interpolation/optimization strategy and demonstrate it on several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.