Abstract
An important aspect in numerical simulations of particle-laden turbulent flows is the interpolation of the flow field needed for the computation of the Lagrangian trajectories. The accuracy of the interpolation method has direct consequences for the acceleration spectrum of the fluid particles and is therefore also important for the correct evaluation of the hydrodynamic forces for almost neutrally buoyant particles, common in many environmental applications. In order to systematically choose the optimal tradeoff between interpolation accuracy and computational cost we focus on comparing errors: the interpolation error is compared with the discretization error of the flow field. In this way one can prevent unnecessary computations and still retain the accuracy of the turbulent flow simulation. From the analysis a practical method is proposed that enables direct estimation of the interpolation and discretization error from the energy spectrum. The theory is validated by means of direct numerical simulations (DNS) of homogeneous, isotropic turbulence using a spectral code, where the trajectories of fluid tracers are computed using several interpolation methods. We show that B-spline interpolation has the best accuracy given the computational cost. Finally, the optimal interpolation order for the different methods is shown as a function of the resolution of the DNS simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.