Abstract

The Hohmann transfer theory, developed in the 19th century, is the kernel of orbital transfer with minimum propellant mass by means of chemical engines. The success of the Deep Space 1 spacecraft has paved the way toward using advanced electrical engines in space. While chemical engines are characterized by high thrust and low specific impulse, electrical engines are characterized by low thrust and hight specific impulse. In this paper, we focus on four issues of optimal interplanetary transfer for a spacecraft powered by an electrical engine controlled via the thrust direction and thrust setting: (a) trajectories of compromise between transfer time and propellant mass, (b) trajectories of minimum time, (c) trajectories of minimum propellant mass, and (d) relations with the Hohmann transfer trajectory. The resulting fundamental properties are as follows:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call