Abstract

The optimal interlesion distance (ILD) for 90 and 50 W radiofrequency applications with low ablation index (AI) values in the atria has not been established. Excessive ILDs can predispose to interlesion gaps, whereas restrictive ILDs can predispose to procedural complications. The present study sought, therefore, to experimentally determine the optimal ILD for 90 W-4 s and 50 W applications with low AI values to optimize catheter ablation outcomes in humans. Posterior intercaval lines were created in eight adult sheep using CARTO and the QDOT-MICRO catheter in a temperature-controlled mode. In four animals, the lines were created with 50 W applications, a target AI value ≥350, and ILDs of 6, 5, 4, and 3 mm, respectively. In the other four animals, the lines were created with 90 W-4 s applications and ILDs of 6, 5, 4, and 3 mm, respectively. Activation maps were created immediately after ablation and at 21 days to assess linear block prior to gross and histological analyses. All eight lines appeared transmural and continuous on histology. However, for 50 W-only applications with an ILD of 3 mm resulted in durable linear electrical block, whereas for 90 W applications, only the lines with ILDs of 4 and 3 mm were blocked. No complications were detected during ablation procedures, but all power and ILD combinations except 50 W-6 mm resulted in asymptomatic shallow lung lesions. In the intercaval region in sheep, for 50 W applications with an AI value of ∼370, the optimal ILD is 3 mm, whereas for 90 W-4 s applications, the optimal ILD is 3-4 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call