Abstract

The majority of information-theoretic hyper-receiver cellular models preserve a fundamental assumption which has initially appeared in Wynerpsilas [1] model, namely the collocation of user terminals (UTs). Although this assumption produces more tractable mathematical models, it is unrealistic with respect to current practical cellular systems. In this paper, we alleviate this assumption by assuming uniformly distributed UTs. The model under investigation is a Gaussian cellular multiple access channel (GCMAC) over a planar cellular array in the presence of power-law path loss and flat fading. In this context, we evaluate the effect of UT distribution on the optimal sum-rate capacity by considering a variable-density cellular system. Furthermore, we compare the sum-rate capacity produced by the planar and the linear cellular array. Finally, the analytical results are interpreted in the context of a typical macrocellular scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call