Abstract

Stability results are given for a class of feedback systems arising from the regulation of time-invariant, discrete-time linear systems using optimal infinite-horizon control laws. The class is characterized by joint constraints on the state and the control and a general nonlinear cost function. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee asymptotic stability of the optimal feedback systems. Prior results, which concern the linear quadratic regulator problem, are included as a special case. The proofs make no use of discrete-time Riccati equations and linearity of the feedback law, hence, they are intrinsically different from past proofs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.