Abstract

Signal processing methods for digital post-correction of analog-to-digital converters (ADCs) are considered. ADC errors are in general signal dependent, and in addition, they often exhibit dynamic dependence. A novel dynamic post-correction scheme based on look-up tables is proposed. In order to reduce the table size and, thus, the hardware requirements, bit-masking is introduced. This is to limit the length of the table index by deselecting index bits. At this point, the problem of which bits to use arises. A mathematical analysis tool is derived, enabling the allocation of index bits to be analyzed. This analysis tool is applied in two optimization problems, optimizing the total harmonic distortion and the signal-to-noise and distortion ratio, respectively, of a corrected ADC. The correction scheme and the optimization problems are illustrated and exemplified using experimental ADC data. The results show that the proposed correction scheme improves the performance of the ADC. They also indicate that the allocation of index bits has a significant impact on the ADC performance, motivating the analysis tool. Finally, the optimization results show that performance improvements compared with static look-up table correction can be achieved, even at a comparable table size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.