Abstract

The min-rank of a digraph was shown to represent the length of an optimal scalar linear solution of the corresponding instance of the Index Coding with Side Information (ICSI) problem. In this paper, the graphs and digraphs of near-extreme min-ranks are studied. Those graphs and digraphs correspond to the ICSI instances having near-extreme transmission rates when using optimal scalar linear index codes. In particular, it is shown that the decision problem whether a digraph has min-rank two is NP-complete. By contrast, the same question for graphs can be answered in polynomial time. In addition, a circuit-packing bound is revisited, and several families of digraphs, optimal with respect to this bound, whose min-ranks can be found in polynomial time, are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.