Abstract
Presented is a simulation/optimization (S/O) model combining optimization with BIOPLUME II for optimizing in situ bioremediation system design. The S/O model uses a new hybrid method combining genetic algorithms and simulated annealing to search for an optimal design and applies the BIOPLUME II model to simulate aquifer hydraulics and bioremediation. This new hybrid method is parallel recombinative simulated annealing, which is a general-purpose optimization approach that has the good convergence of simulated annealing and the efficient parallelization of a genetic algorithm. We propose a two-stage management approach. The first-stage design goal is to minimize total system cost (pumping/treatment, well installation, and facility capital costs). The second-stage design goal is to minimize the cost of a time-varying pumping strategy using the optimal system chosen by the first-stage optimization. Optimization results show that parallel recombinative simulated annealing performs better than simulated anneal...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.