Abstract

AbstractThis paper presents the implementation of impedance control for a hydraulically driven hexapod robot named COMET‐IV, which can walk on uneven and extremely soft terrain. To achieve the dynamic behavior of the hexapod robot, changes in center of mass and body attitude must be taken into consideration during the walking periods. Indirect force control via impedance control is used to address these issues. Two different impedance control schemes are developed and implemented: single‐leg impedance control and center of mass‐‐based impedance control. In the case of single‐leg impedance control, we derive the necessary impedance and adjust parameters (mass, damping, and stiffness) according to the robot legs' configuration. For center of mass–based impedance control, we use the sum of the forces of the support legs as a control input (represented by the body's current center of mass) for the derived impedance control and adjust parameters based on the robot body's configuration. The virtual forces from the robot body's moment of inertia are adapted to achieve optimal control via a linear quadratic regulator method for the proposed indirect attitude control. In addition, a compliant switching mechanism is designed to ensure that the implementation of the controller is applicable to the tripod sequences of force‐based walking modules. Evaluation and verification tests were conducted in the laboratory and the actual field with uneven terrain and extremely soft surfaces. © 2011 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.