Abstract

Person Re-identification is extensively applied in public security and surveillance. However, environmental factors like time and location often lead to varying lighting conditions in captured pedestrian images, significantly impacting identification accuracy. Current approaches mitigate this issue through lighting transformation techniques, aiming to normalize images to a standard lighting condition for consistent person re-identification results. Yet, these methods overlook the fact that different content may hold distinct identification values under diverse lighting conditions. To address this, we conducted an analysis on the identification distance between images of the same or different pedestrians under predefined lighting conditions. From this analysis, we introduce the concept of optimal lighting: a condition where the distance between image pairs is minimized compared to other lighting scenarios. We propose utilizing this optimal lighting distance in the image retrieval process for final ranking. Our study, validated on synthetic datasets Market-IA and Duke-IA, demonstrates that optimal lighting is independent of image texture information. Each image pair exhibits a unique optimal lighting, yet consistently shows a minimum distance value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.