Abstract
The problem of optimal illumination for selective array imaging of small and not well separated scatterers in clutter is considered. The imaging algorithms introduced are based on the coherent interferometric (CINT) imaging functional, which can be viewed as a smoothed version of travel-time migration. The smoothing gives statistical stability to the image but it also causes blurring. The trade-off between statistical stability and blurring is optimized with an adaptive version of CINT. The algorithm for optimal illumination and for selective array imaging uses CINT. It is a constrained optimization problem that is based on the quality of the image obtained with adaptive CINT. The resulting optimal illuminations and selectivity improve the resolution of the images significantly, as can be seen in the numerical simulations presented in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.