Abstract
The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so far by conventional threat detection techniques. The current research article develops a Hybrid Deep Learning to Combat Sophisticated False Data Injection Attacks detection (HDL-FDIAD) for the IoT environment. The presented HDL-FDIAD model majorly recognizes the presence of FDI attacks in the IoT environment. The HDL-FDIAD model exploits the Equilibrium Optimizer-based Feature Selection (EO-FS) technique to select the optimal subset of the features. Moreover, the Long Short Term Memory with Recurrent Neural Network (LSTM-RNN) model is also utilized for the purpose of classification. At last, the Bayesian Optimization (BO) algorithm is employed as a hyperparameter optimizer in this study. To validate the enhanced performance of the HDL-FDIAD model, a wide range of simulations was conducted, and the results were investigated in detail. A comparative study was conducted between the proposed model and the existing models. The outcomes revealed that the proposed HDL-FDIAD model is superior to other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.