Abstract

As global interest in renewable energy continues to increase, there has been a pressing need for developing novel energy storage devices based on organic electrode materials that can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find materials whose redox potential (RP) meets specific design targets. In this study, we propose a computational framework for addressing this challenge through the effective design and optimal operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the RP of a given material, we show how a set of surrogate models with different accuracy and complexity may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that the proposed HTVS pipeline construction and operation strategies substantially enhance the overall screening throughput.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.