Abstract

AbstractIn this study, an optimal reservoir refill hedging rule (RHR) is developed under hydrologic uncertainty using a two-stage model. Based on the probability distribution of the maximum refill water availability at the end of refill season, three possible cases exist: unfilled without flood damage, complete filling without flood damage, and complete filling with flood damage. These cases are characterized based on relationships among storage capacity, expected storage buffer, and maximum safe excess discharge. Karush–Kuhn–Tucker (KKT) conditions for the two-stage model show that the optimal refill operation equates the expected marginal loss of conservation benefit from not complete filling (i.e., ending storage of refill period less than storage capacity) and the expected marginal flood damage from levee overtopping downstream, unless constrained by capacity constraints. A RHR curve, which is analogous to water supply hedging and flood hedging rules, is drawn and shows the trade-off between the two o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.