Abstract

A heat exchanger can be modeled as a closed domain containing an incompressible fluid. The moving fluid has a temperature distribution obeying the advection-diffusion equation, with zero temperature boundary conditions at the walls. Starting from a positive initial temperature distribution in the interior, the goal is to flux the heat through the walls as efficiently as possible. Here we consider a distinct but closely related problem, that of the integrated mean exit time of Brownian particles starting inside the domain. Since flows favorable to rapid heat exchange should lower exit times, we minimize a norm of the exit time. This is a time-independent optimization problem that we solve analytically in some limits, and numerically otherwise. We find an (at least locally) optimal velocity field that cools the domain on a mechanical time scale, in the sense that the integrated mean exit time is independent on molecular diffusivity in the limit of large-energy flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.