Abstract

We consider optimal strategies for harvesting a population that is composed of two local populations. The local populations are connected by the dispersal of juveniles, e.g. larvae, and together form a metapopulation. We model the metapopulation dynamics using coupled difference equations. Dynamic programming is used to determine policies for exploitation that are economically optimal. The metapopulation harvesting theory is applied to a hypothetical fishery and optimal strategies are compared to harvesting strategies that assume the metapopulation is composed either of single unconnected populations or of one well-mixed population. Local populations that have high per capita larval production should be more conservatively harvested than would be predicted using conventional theory. Recognizing the metapopulation structure of a stock and using the appropriate theory can significantly improve economic gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.