Abstract

This work deals with a prey–predator model in an environment where the carrying capacities are assumed to be variable with time and one species feeds upon the other. Independent harvesting efforts are applied in either species and asymmetrical intraguild predation occurs. A common resource is consumed by two competing species and at the same time predator also consumes the prey. At first we discuss the model under constant carrying capacity and make the conclusion that no limit cycle exists in this case. Then we discuss the model without intraspecific competition. Our main concern is to cover the above mentioned two cases together, i.e. the model with variable carrying capacity and intraspecific competition. We determine the steady states and examine the dynamical behavior. We also analyze the local and global stability of the interior equilibrium by Routh–Hurwitz criterion and a suitable Lyapunov function respectively. A Hopf bifurcation occurs with respect to a parameter which is the ratio of predator’s and prey’s intrinsic growth rate. The possibility of bionomic equilibrium has been considered. The optimal harvest policy is formulated and solved with Pontryagin’s maximum principle. Some numerical simulations are given to explain most of the analytical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call