Abstract

Optimal Hankel norm model reduction for dynamical systems is of great significance in model-based simulation and design. For the class of linear time-invariant systems, it is among the few optimal reduction methods for which a prior error bound between the original system and its approximation is known. However, for descriptor systems, this optimal approximation technique no longer applies. In this paper, we propose several definitions of the Hankel operator for dynamical discrete-time descriptor systems. We investigate the implications of these definitions for the problem of optimal model approximation of descriptor systems in the sense of the Hankel norm. Novel reduction algorithms are derived for this class of systems with and without preservation of the DAE-index. The performance of the proposed methods is illustrated by numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.