Abstract
This paper deals with state-feedback control of discrete-time linear jump systems. The random variable representing the system modes has a generalized Bernoulli distribution, which is equivalent to a Markov chain where the transition probability matrix has identical rows. Another assumption is about the availability of the mode to the controller. We derive necessary and sufficient linear matrix inequalities (LMI) conditions to design optimal H2 and H∞ state-feedback controllers for the particular class of transition probabilities under consideration and subject to partial mode availability constraints or equivalently cluster availability constraints, which include mode-dependent and mode-independent designs as particular cases. All design conditions are expressed in terms of LMIs. The results are illustrated through a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.