Abstract
AbstractUsing gas‐phase technology many grades of polyethylene can be produced in a single reactor. For a series of three polyethylene products, model‐based dynamic optimization is used to determine optimal grade changeover policies. Optimal manipulated variable profiles are determined for hydrogen and butene feed rates, reactor temperature setpoint, gas bleed flow, catalyst feed rate, and bed level setpoint. It is shown that large transitions in melt index are hampered by slow hydrogen dynamics, and that the time required for such a transition can be reduced by manipulating the temperature setpoint and the bleed stream flow. Reduction of the bed level and catalyst feed rates during changeovers can significantly reduce the quantity of off‐specification polymer produced. It is demonstrated that melt index and density are not sufficient to characterize the properties of polymer produced during grade transitions, and that the shape of the cumulative copolymer composition distribution is very sensitive to the grade changeover policy used. Optimal transition policies should not be implemented without feedback control. Disturbances and model mismatch can result in product property trajectories which deviate significantly from the nominal optimal trajectory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.