Abstract
We consider the problem of global synchronization in a large random network of Kuramoto oscillators where some of them are subject to an external periodically driven force. We explore a recently proposed dimensional reduction approach and introduce an effective two-dimensional description for the problem. From the dimensionally reduced model, we obtain analytical predictions for some critical parameters necessary for the onset of a globally synchronized state in the system. Moreover, the low dimensional model also allows us to introduce an optimization scheme for the problem. Our main conclusion, which has been corroborated by exhaustive numerical simulations, is that for a given large random network of Kuramoto oscillators, with random natural frequencies ωi, such that a fraction of them is subject to an external periodic force with frequency Ω, the best global synchronization properties correspond to the case where the fraction of the forced oscillators is chosen to be those ones such that |ωi-Ω| is maximal. Our results might shed some light on the structure and evolution of natural systems for which the presence or the absence of global synchronization is a desired property. Some properties of the optimal forced networks and their relation to recent results in the literature are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.