Abstract

In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.

Highlights

  • Non-verbal communication plays an important role in developing intelligent machines that can exhibit better interaction with humans by closely emulating human-human communications. Researchers have increase their focus on developing an intelligent human-machine interface (HMI) system for assisting elderly people that could improve their quality of life [1, 2]

  • Facial expression recognition has been considered as a major research topic over the past several decades for developing intelligent systems [16, 17, 20, 37]

  • Most early work focused on AUs, and a little attention was paid to manual and virtual marker-based facial expression detection

Read more

Summary

Introduction

Non-verbal communication plays an important role in developing intelligent machines that can exhibit better interaction with humans by closely emulating human-human communications. Researchers have increase their focus on developing an intelligent human-machine interface (HMI) system for assisting elderly people that could improve their quality of life [1, 2]. Postures, and facial expressions are used as non-verbal communication mediums to develop HMI systems. Over the past several decades, researchers have developed intelligent methodologies to effectively recognize human facial expressions that have been implemented in real-time systems for a variety of applications, such as video gaming, machine vision, pain assessment, psychology, behavioral analysis, and clinical diagnosis [6,7,8,9]. Recent HMI systems can “understand” the expressions of humans and perform different tasks [10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call