Abstract

Tolerance design is always a challenging task for engineers, since it need to satisfy multidisciplinary functions. Engineering design is done in two stages: assembly design and detail design. In the first stage, an assembly is designed considering certain system level functions and in secondary detail design stage; decomposition of the assembly is done and process tolerancing is employed for the parts. At the secondary detail design stage, designer adopts geometrical dimensioning and tolerancing (GDT (2) GD&T is adopted in the secondary stage, which is not available in primary stage. This paper offers a framework for a design engineer to bridge the gap and to establish the relation between these stages. A nonlinear combinatorial optimization problem is framed based on assembly function requirement (AFR), and tolerance values are optimized with appropriate constraints. Nontraditional Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and differential evolution (DE) algorithms are used to solve the problem. For the allocated position tolerances, appropriate sensitive factors are indicated to facilitate design improvement. Finally, a case study is used to illustrate the complete framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.