Abstract

Bounds on the ultimate precision attainable in the estimation of a parameter in Gaussian quantum metrology are obtained when the average number of bosonic probes is fixed. We identify the optimal input probe state among generic (mixed in general) Gaussian states with a fixed average number of probe photons for the estimation of a parameter contained in a generic multimode interferometric optical circuit, namely, a passive linear circuit preserving the total number of photons. The optimal Gaussian input state is essentially a single-mode squeezed vacuum, and the ultimate precision is achieved by a homodyne measurement on the single mode. We also reveal the best strategy for the estimation when we are given L identical target circuits and are allowed to apply passive linear controls in between with an arbitrary number of ancilla modes introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.