Abstract

AbstractThe paper presents general results about the gathering problem on graphs. A team of robots placed at the vertices of a graph, have to meet at some vertex and remain there. Robots operate in Look-Compute-Move cycles; in one cycle, a robot perceives the current configuration in terms of robots disposal (Look), decides whether to move towards one of its neighbors (Compute), and in the positive case makes the computed move (Move). Cycles are performed asynchronously for each robot.So far, the goal has been to provide feasible resolution algorithms with respect to different assumptions about the capabilities of the robots as well as the topology of the underlying graph. In this paper, we are interested in studying the quality of the resolution algorithms in terms of the minimum number of asynchronous moves performed by the robots.We provide results for general graphs that suggest resolution techniques and provide feasibility properties. Then, we apply the obtained theory on specific topologies like trees and rings. The resulting algorithms for trees and rings are then compared with the existing ones, hence showing how the old solutions can be far apart from the optimum.KeywordsShort PathMobile RobotExact AlgorithmResolution AlgorithmCompute MoveThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.