Abstract
In this note, the authors propose a generalization of the well known Wiener-Hopf design method of optimal controllers and filters, applicable to a certain class of systems described by fractional order differential equations, the so called rational order systems that, in the Laplace domain, are described by transfer functions which are quotients of polynomials in salpha, alpha = (1 /q), q being a positive integer. As can be verified in the literature, such transfer functions arise in the characterization of some industrial processes and physical systems which can be adequately modeled using fractional calculus, or when modeling some distributed parameter systems by finite dimensional models. A brief exposition of the standard Wiener-Hopf method, and some fundamental considerations about rational order systems are given before presenting the proposed procedure. Illustrative examples are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.