Abstract

An optimization algorithm, inspired by the animal Behavioral Ecology Theory—Optimal Foraging Theory, named the Optimal Foraging Algorithm (OFA) has been developed. As a new stochastic search algorithm, OFA is used to solve the global optimization problems following the animal foraging behavior. During foraging, animals know how to find the best pitch with abundant prey; in establishing OFA, the basic operator of OFA was constructed following this foraging strategy. During foraging, an individual of the foraging swarms obtained more opportunities to capture prey through recruitment; in OFA the recruitment was adopted to ensure the algorithm has a higher chance to receive the optimal solution. Meanwhile, the precise model of prey choices proposed by Krebs et al. was modified and adopted to establish the optimal solution choosing strategy of OFA. The OFA was tested on the benchmark functions that present difficulties common to many global optimization problems. The performance comparisons among the OFA, real coded genetic algorithms (RCGAs), Differential Evolution (DE), Particle Swarm Optimization (PSO) algorithm, Bees Algorithm (BA), Bacteria Foraging Optimization Algorithm (BFOA) and Shuffled Frog-leaping Algorithm (SFLA) are carried out through experiments. The parameter of OFA and the dimensions of the multi-functions are researched. The results obtained by experiments and Kruskal-Wallis test indicate that the performance of OFA is better than the other six algorithms in terms of the ability to converge to the optimal or the near-optimal solutions, and the performance of OFA is the second-best one from the view of the statistical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.