Abstract

The requirements and design philosophy for developing ground-based automation planning and control advisory concepts to best serve aircraft with flight management systems (FMS) are defined. Analytical results are presented that are based on the comparison of operational data with the user-preferred trajectories to identify flying-time variabilities in various segments of arriving flights. En route descents, terminal maneuvering areas, and the final approaches are considered to determine the impact of aircraft and environmental factors on flying times essential for traffic planning. Simple time-estimation algorithms based on FMS-defined speed schedules and prevailing winds are presented for estimating flying times during en route descents. Automation, planning and control concepts are developed that utilize flexible route structures and a speed-control strategy to permit the aircraft maximum use of FMS and onboard avionics in all operating conditions. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.