Abstract

This paper presents a method for designing inputs to identify linear continuous-time multiple-input multiple-output (MIMO) systems. The goal here is to design a T-optimal band-limited spectrum satisfying certain input/output power constraints. The input power spectral density matrix is parametrized as the product $$\phi_u(\text{j}\omega)=\frac{1}{2}H(\text{j}\omega)H^\text{H}(\text{j}\omega)$$ , where H(jω) is a matrix polynomial. This parametrization transforms the T-optimal cost function and the constraints into a quadratically constrained quadratic program (QCQP). The QCQP turns out to be a non-convex semidefinite program with a rank one constraint. A convex relaxation of the problem is first solved. A rank one solution is constructed from the solution to the relaxed problem. This relaxation admits no gap between its solution and the original non-convex QCQP problem. The constructed rank one solution leads to a spectrum that is optimal. The proposed input design methodology is experimentally validated on a cantilever beam bonded with piezoelectric plates for sensing and actuation. Subspace identification algorithm is used to estimate the system from the input-output data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call