Abstract

In this note, the optimal filtering problem for linear systems with state delay over linear observations is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. As a result, the optimal estimate equation similar to the traditional Kalman-Bucy one is derived; however, it is impossible to obtain a system of the filtering equations, that is closed with respect to the only two variables, the optimal estimate and the error variance, as in the Kalman-Bucy filter. The resulting system of equations for determining the error variance consists of a set of equations, whose number is specified by the ratio between the current filtering horizon and the delay value in the state equation and increases as the filtering horizon tends to infinity. In the example, performance of the designed optimal filter for linear systems with state delay is verified against the best Kalman-Bucy filter available for linear systems without delays and two versions of the extended Kalman-Bucy filter for time-delay systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.