Abstract
In this paper, the optimal filtering problem for polynomial system states with polynomial multiplicative noise over linear observations with an arbitrary, not necessarily invertible, observation matrix is treated proceeding from the general expression for the stochastic Ito differential of the optimal estimate and the error variance. Thus, the Ito differentials for the optimal estimate and error variance corresponding to the stated filtering problem are first derived. A transformation of the observation equation is introduced to reduce the original problem to the previously solved one with an invertible observation matrix. The procedure for obtaining a closed system of the filtering equations for any polynomial state with polynomial multiplicative noise over linear observations is then established, which yields the explicit closed form of the filtering equations in the particular cases of linear and bilinear state equations. In an example, the performance of the designed optimal filter is verified against those of the optimal filter for a quadratic state with a state-independent noise and a conventional extended Kalman---Bucy filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.