Abstract

Conventional design techniques for analysis and synthesis filters in subband processing applications guarantee perfect reconstruction of the original signal from its subband components. The resulting filters, however, lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband sequences. We propose filter design techniques that minimize the reconstruction mean squared error (MSE) taking into account the second order statistics of signals and noise in the case of either stochastic or deterministic signals. A novel recursive, pseudo-adaptive algorithm is proposed for efficient design of these filters. Analysis and derivations are extended to 2-D signals and filters using powerful Kronecker product notation. A prototype application of the proposed ideas in subband coding is presented. Simulations illustrate the superior performance of the proposed filter banks versus conventional perfect reconstruction filters in the presence of additive subband noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.