Abstract

SummaryMechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.