Abstract
Time-domain vibration signals are measured in all horizontal, axial, and vertical directions for induction motor mechanical fault diagnostics. Many features are extracted from these signals. The problem is how to find the good features among the feature set in order to receive reliable classifications. Based on specific distance criteria, a genetic algorithm (GA) is introduced to reduce the number of features by selecting optimized ones for fault classification purpose. A decision tree and multi-class support vector machine are used to illustrate the potentiality and efficiency of this selection method. Comparisons show that the diagnostic systems after selecting specific features perform better than the original system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.